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ABSTRACT

Quantum computing is on the cusp of realitywithNoisy Intermediate-

Scale Quantum (NISQ) machines currently under development and

testing. Some of the most promising algorithms for these machines

are variational algorithms that employ classical optimization cou-

pled with quantum hardware to evaluate the quality of each candi-

date solution. Recent work used GRadient Descent Pulse Engineer-

ing (GRAPE) to translate quantum programs into highly optimized

machine control pulses, resulting in a significant reduction in the

execution time of programs. This is critical, as quantum machines

can barely support the execution of short programs before failing.

However, GRAPE suffers from high compilation latency, which is

untenable in variational algorithms since compilation is interleaved

with computation. We propose two strategies for partial compila-

tion, exploiting the structure of variational circuits to pre-compile

optimal pulses for specific blocks of gates. Our results indicate sig-

nificant pulse speedups ranging from 1.5x-3x in typical benchmarks,

with only a small fraction of the compilation latency of GRAPE.
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1 INTRODUCTION

In the Noisy Intermediate-Scale Quantum (NISQ) era, we expect

to operate hardware with hundreds or thousands of quantum bits

(qubits), acted on by imperfect gates [42]. Moreover, connectivity

in these NISQ machines will be sparse and qubits will have modest

lifetimes. Given these limitations, NISQ era machines will not be

able to execute large-scale quantum algorithms like Shor Factoring

[45] and Grover Search [20], which rely on error correction that

requires millions of qubits [38, 48].

However, recently, variational algorithms have been introduced

that are well matched to NISQ machines. This new class of algo-

rithms has a wide range of applications such as molecular ground

state estimation [41], MAXCUT approximation [14], and prime fac-

torization [2]. The two defining features of a variational algorithm

are that:

(1) the algorithm complies with the constraints of NISQ hard-

ware. Thus, the circuit for a variational algorithm should

have modest requirements in qubit count (circuit width) and

runtime (circuit depth / critical path).

(2) the quantum circuit for the algorithm is parametrized by a

list of angles. These parameters are optimized by a classical

optimizer over the course of many iterations. For this reason,

variational algorithms are also termed as hybrid quantum-

classical algorithms [42]. Typically, a classical optimizer that

is robust to small amounts of noise (e.g. Nelder-Mead) is

chosen [32, 41].

Standard non-variational quantum algorithms are fully speci-

fied at compile time and therefore can be fully optimized by static

compilation tools as in previous work [23, 26]. By contrast, each

iteration of a variational algorithm depends on the results of the

previous iterationśhence, compilation must be interleaved through

the computation. As even small instances of variational algorithms

will require thousands of iterations [24], the compilation latency for

each iteration therefore becomes a serious limitation. This feature

of variational algorithms is a significant departure from previous

non-variational quantum algorithms.

To cope with this limitation on compilation latency, past work

on variational algorithms has performed compilation under the

standard gate-based model. This methodology has the advantage

of extremely fast compilationśa lookup table maps each gate to

a sequence of machine-level control pulses so that compilation

simply amounts to concatenating the pulses corresponding to each
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gate. We note that this compilation procedure is a conservative

picture of experimental approaches to gate-based compilation. In

practice, parametrized gates may be handled by a step-function

lookup table that depends on the run-time parameters, with the

aim of reducing errors, as demonstrated in [4, 34, 36].

The gate-based compilation model is known to fall short of the

GRadient Ascent Pulse Engineering (GRAPE) [17, 25] compilation

technique, which compiles directly to the level of the machine-

level control pulses that a quantum computer actually executes. In

past work [1, 27, 44], GRAPE has been used to achieve 2-5x pulse

speeedups over gate-based compilation for a range of quantum

algorithms. Since fidelity decreases exponentially in time, with

respect to the extremely short lifetimes of qubits, reducing the

pulse duration is critical to ensuring that a computation completes

before being completely scrambled by quantum decoherence effects.

Thus, 2-5x pulse speedups translate to an even bigger advantage in

the success probability of a quantum circuit.

However, GRAPE-based compilation has a substantial cost: com-

pilation time. Running GRAPE control on a circuit with just four

qubits takes several minutes. For representative four qubit circuits,

we observed compile times ranging from 10 minutes to 1 hour, even

with state-of-the-art hardware and GPU acceleration. This would

amount to several weeks or months of total compilation latency

over the course of thousands of iterations (and millions of itera-

tions will be needed for larger problems). By contrast, typical pulse

times for quantum circuits are on the order of microseconds, so the

compilation latency imposed by GRAPE is untenable. Thus, GRAPE-

based compilation is not practical out-of-the-box for variational

algorithms.

In this paper, we introduce partial compilation, a strategy that ap-

proaches the pulse duration speedup of GRAPE, but with a manage-

able overhead in compilation latency. With this powerful new com-

piler capability, we enable the architectural choice of pulse-

level instructions, which supports more complex near-term ap-

plications through lower latencies and thus much lower error rates.

This architectural choice would be infeasible without our compiler

support. Our specific contributions include:

• Demonstration of the advantage of GRAPE over gate based

compilation for variational algorithms

• Strict partial compilation, a strategy that pre-computes opti-

mal pulses for parametrization-independent blocks of gates.

This strategy is strictly better than gate-based compilationś

it achieves a significant pulse speedup (approaching GRAPE

results), with no overhead in compilation latency.

• Flexible partial compilation, a strategy that performs as well

as full GRAPE, but with a dramatic speedup in compilation

latency via precomputed hyperparameter optimization.

The rest of this paper is organized as follows. Section 2 gives

prerequisite background on quantum computation and Section 3

describes related work from prior research. Section 4 describes char-

acteristics of our benchmark variational algorithms, with particular

attention to the structural properties that our compilation strategies

exploit. Section 5 explains the GRAPE compilation methodology.

Sections 6 and 7 explain our partial compilation strategies and

Section 8 discusses our results. We conclude in Section 9 and pro-

pose future work in Section 10. Appendix A presents the system

Hamiltonian that we consider in GRAPE.

2 BACKGROUND ON QUANTUM
COMPUTATION

2.1 Qubits

The fundamental unit of quantum computation is a quantum bit, or

qubit. A qubit has two basis states, which are represented by state

vectors denoted

|0⟩ =

(
1

0

)
and |1⟩ =

(
0

1

)
.

Unlike a classical bit, the state of a qubit can be in a superposition

of both |0⟩ and |1⟩. In particular, the space of valid qubit states

are α |0⟩ + β |1⟩, normalized such that |α |2 + |β |2 = 1. When a

qubit is measured, its quantum state collapses and either |0⟩ or |1⟩

is measured, with probabilities |α |2 and |β |2 respectively.

A two-qubit system has four basis states:

|00⟩ =
©«

1

0

0

0

ª®®®¬
, |01⟩ =

©«

0

1

0

0

ª®®®¬
, |10⟩ =

©«

0

0

1

0

ª®®®¬
, and |11⟩ =

©«

0

0

0

1

ª®®®¬
and any two-qubit state can be expressed as the superposition

α |00⟩+β |01⟩+γ |10⟩+δ |11⟩ (normalized so that |α |+ |β |2+ |γ |2+

|δ |2 = 1). More generally, an N -qubit system has 2N basis states.

Therefore, 2N numbers, called amplitudes, are needed to describe

the state of a generalN -qubit system. This exponential scaling gives

rise to both the difficulty of classically simulating a quantum system,

as well as the potential for quantum computers to exponentially

outperform classical computers in certain applications.

2.2 Quantum Gates

A quantum algorithm is described in terms of a quantum circuit,

which is a sequence of 1- and 2- input quantum gates. Every quan-

tum gate is represented by a square matrix, and the action of a

gate is to left-multiply a state vector by the gate’s matrix. Because

quantum states are normalized by measurement probabilities, these

matrices must preserve l2-norms. This corresponding set of matri-

ces are unitary (orthogonal) matrices. The unitary matrices for two

important single-qubit gates are:

Rx (θ ) =

(
i cos θ

2 sin θ
2

sin θ
2 i cos θ

2

)
and Rz (ϕ) =

(
1 0

0 eiϕ

)

At θ = π , the Rx (π ) gate has matrix
(
0 1
1 0

)
, which acts as a NOT

gate: left-multiplying by it swaps between the |0⟩ and |1⟩ states.

This bit-flip gate is termed the X gate.

Similarly, at ϕ = π , the Rz (π ) gate has matrix
(
1 0
0 −1

)
, which

applies a −1 multiplier to the amplitude of |1⟩; this type of gate is

unique to the quantum setting, where amplitudes can be negative

(or complex). This ‘phase’-flip gate is termed the Z gate.
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Gate Rz (ϕ) Rx (θ ) H CX SWAP

Time (ns) 0.4 2.5 1.4 3.8 7.4

Table 1: Library of the compiler’s gate set and correspond-

ing pulse durations (in nanoseconds) for each gate. The run-

times of circuits under gate-based compilation are indexed

to these pulse durations.

An important 2-input quantum gate is

CX =
©«

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®®¬
The CX gate, often referred to as the CNOT or Controlled-NOT

gate, applies an action that is controlled on the first input. If the

first input is |0⟩, then the CX gate has no effect. If the first input is

|1⟩, then it applies an X = Rx (π ) to the second qubit.

The CX gate is an entangling gate, meaning that its effect cannot

be decomposed into independent gates acting separately on the two

qubits. An important result in quantum computation states that the

set of all one qubit gates, plus a single entangling gate, is sufficient

for universality [37]. Since the Rx (θ ) and Rz (ϕ) gates span the set

of all one qubit gates, we see that, {Rx (θ ),Rz (ϕ),CX } is a universal

gate set.

In practice, we seek to implement a quantum algorithm using

the most efficient quantum circuit possible, with efficiency defined

in terms of circuit width (number of qubits) and depth (length

of critical path, or runtime of the circuit). Accordingly, quantum

circuits are optimized by repeatedly applying gate identities that

reduce the resources consumed by the circuit. All circuits that

are presented in this paper were optimized using IBM Qiskit’s

Transpiler, which applies a variety of circuit identitiesśfor example,

aggressive cancellation of CX gates and ‘Hadamard’ gates. We also

augmented the IBM optimizer with our own compiler pass for

merging rotation gatesśe.g. Rx (α) followed by Rx (β) merges into

Rx (α + β)śwhich we found to further reduce circuit sizes.

2.3 Gate-Based Compilation

At the lowest level of hardware, quantum computers are controlled

by analog pulses. Therefore, quantum compilation must translate

from a high level quantum algorithm down to a sequence of control

pulses. Once a quantum algorithm has been decomposed into a

quantum circuit comprising single- and two- qubit gates, gate-based

compilation simply proceeds by concatenating a sequence of pulses

corresponding to each gate. In particular, a lookup table maps from

each gate in the gate set to a sequence of control pulses that executes

that gate. Table 1 indicates the total pulse duration for each gate in

the compilation basis gate set. These pulse durations are based on

the gmon-qubit [7] quantum system described in Appendix A.

As previously noted, the {Rx (θ ),Rz (ϕ),CX} gate set alone is

sufficient for universality, so in principle the H and SWAP gates

could be removed from the compilation basis gate set. However,

we include the generated pulses (using GRAPE as described below)

for these gates in our compilation set, because quantum assembly

languages typically include them in their basis set [19, 22, 33, 46,

47, 50].

The advantage of the gate-based approach is its short pulse

compilation time, as the lookup and concatenation of pulses can

be accomplished almost instantaneously. However, it prevents the

optimization of pulses from happening across the gates, because

there might exists a global pulse for the entire circuit that is shorter

and more accurate than the concatenated one. The quality of the

concatenated pulse relies heavily on an efficient gate decomposition

of the quantum algorithm.

2.4 GRAPE

GRadient Pulse Engineering (GRAPE) is a strategy for compilation

that numerically finds the best control pulses needed to execute a

quantum circuit or subcircuit by following a gradient descent pro-

cedure [10, 25]. We use the Tensorflow implementation of GRAPE

described in [27]. In contrast to the gate based approach, GRAPE

does not have the limitation incurred by the gate decomposition.

Instead, it directly searches for the optimal control pulse for the

input circuit as a whole. Our full GRAPE procedure is described

further detail in Section 5.

3 RELATEDWORK

Past publications of variational algorithm implementations have

relied on gate-based compilation, using parametrized gates such

as Rx (θ ) and Rz (ϕ). Existing quantum languages offer support for

such parametrized gates [19, 22, 33, 46, 47, 53]. In most languages,

the angles must be declared at compile timeśthus at every iter-

ation of a variational algorithm, a new circuit is compiled based

on the new parametrization. Rigetti’s Quil [46] language goes a

step further by supporting runtime resolution of the parameters

in parameters gates, which allows dynamic implementations of

variational algorithms. However, as acknowledged in the Quil spec-

ifications, this approach hampers circuit optimization, because the

actual parameters are not known until runtime.

While this paper treats gate-based compilation as a simple lookup

table between gates and pulses, experimental implementations have

already moved directionally towards GRAPE-style, because pulse

sequences can depend on the input angles in a complicated fashion.

For example, in [4], a parametrized U (ϕ) gate has five different

pulse sequence decompositions, each corresponding to ϕ in ranges

set by the breakpoints [−π , 2.25,−0.25, 0.25, 2.25,π ]. [36] and [34]

have similar step-function gate-to-pulse translation.

The growing overhead of compilation latency has been recog-

nized, and recent work has proposed the development of specialized

FPGAs for the compilation of variational algorithms [35]. More

broadly, we note that pulse level control is at the cusp of industry

adoption. An open specification for pulse-level control, OpenPulse,

was standardized recently [33], and IBM plans to introduce an API

for pulse level control in 2019 [21]. Pulse access to quantum ma-

chines will open the door to experimental realizations of GRAPE,

including for variational algorithms as proposed in this paper.

4 VARIATIONAL BENCHMARKS

Variational quantum algorithms are important in the near-term

because they comply with the constraints of NISQ hardware. In
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Variational Algorithm

Quantum Classical

Quantum

hardware

Classical

hardware

“Parameterized circuit” “Gradient descent”

New trial parameters

Partial compilation

Pulse optimization

Input parameters: "⃗

Evaluate: E["⃗]

Output ("⃗, E()*["⃗]) after 

sufficient iterations.

Next guess: "′

("⃗, E "⃗ )

Search for E-./

Figure 1: Illustration of a variational quantum algorithm

that alternates between a quantum circuit and a classical op-

timizer. In this process, the quantum circuit (parameterized

by ®θ ) evaluates some cost function E[ ®θ ], and the classical op-

timizer gradient descends for the next set of parameters.

particular, variational algorithms have innate error resilience, due

to the hybrid alternation with a noise-robust classical optimizer

[32, 41]. Every iteration of a variational algorithm is parameterized

by a list of angles. In general, the parameter space explored by a

variational algorithm is not known a prioriśthe classical optimizer

picks the next iteration’s parameters based on the results of the

previous iterations. Consequently, the compilation for each itera-

tion is interleaved with the actual computation. A schematic of this

process is illustrated in Figure 1.

There are two variational quantum algorithms: Variational Quan-

tum Eigensolver and Quantum Approximate Optimization Algo-

rithm. We discuss both below.

4.1 Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) is used to find the

ground state energy of a molecule, a task that is exponentially

difficult in general for a classical computer, but is believed to be

efficiently solvable by a quantum computer [31]. Estimating the

molecular ground state has important applications to chemistry

such as determining reaction rates [13] and molecular geometry

[40]. A conventional quantum algorithm for solving this problem is

called the Quantum Phase Estimation (QPE) algorithm [28]. How-

ever, for a target precision ϵ , QPE requires a quantum circuit with

depth O(1/ϵ), whereas VQE algorithm requires O(1/ϵ2) iterations

of depth-O(1) circuits[52]. The latter assumes a much more relaxed

fidelity requirement on the qubits and gate operations, because the

higher the circuit depth, the more likely the circuit experiences

an error at the end. At a high level, VQE can be conceptualized

as a guess-check-repeat algorithm. The check stage involves the

preparation of a quantum state corresponding to the guess. This

preparation stage is done in polynomial time on a quantum com-

puter, but would incur exponential cost (owing to the 2N state

Molecule Width (# of Qubits) # of Params Gate-Based Runtime

H2 2 3 35 ns

LiH 4 8 872 ns

BeH2 6 26 5308 ns

NaH 8 24 5490 ns

H2O 10 92 33842 ns

Table 2: Benchmarked circuits for VQE, using the UCCSD

ansatz. Each circuit was optimized, parallel-scheduled,

mapped using IBM Qiskit’s tools, augmented by an addi-

tional optimization passwewrote tomerge consecutive rota-

tion gates. The Gate-Based Runtime is indexed to the pulse

durations for each gate reported in Table 1.

vector scaling) in general on a classical computer. This contrast

gives rise to a potential quantum speedup for VQE.

The quantum circuit corresponding to the guess is termed an

ansatz. While many ansatz choices are possible, Unitary Coupled

Cluster Single-Double (UCCSD), an ansatz motivated by principles

of quantum chemistry, is considered the gold standard [6, 43]. The

UCCSD ansatz is also promising because it could circumvent the

barren plateaus issue that affects many other ansatzes [31].

We benchmark the UCCSD ansatz for five molecules: H2, LiH,

BeH2, NaH, H2O. These molecules span the state of the art for

experimental implementations of VQE: H2O is the largest molecule

addressed by VQE [36] to date. We generated our UCCSD ansatz

circuits using the IBM Qiskit implementation described in [5] as

well as the PySCF Python package [49] to manage molecular data.

Both the the circuit depth and number of ansatz parameters in

UCCSD scale as O(N 4) in the circuit width [3]. Table 2 specifies

the exact circuit width, number of variational parameters, and gate-

based runtime (circuit depth) for each of the benchmarks. The

reported gate-based runtimes are indexed to the pulse durations of

each gate reported in Table 1. Each circuit was optimized using IBM

Qiskit’s circuit optimizer pass system, Qiskit’s circuit mapper (to

conform to nearest neighbor connectivity), and a custom compiler

pass to merge neighboring rotation gates on the same axis. We

also exploit parallelism to simultaneously schedule as many gates

as posisble; the reported gate-based runtimes are for the critical

path through the parallelized circuit. These circuit optimizations

form a fair baseline for the best circuit runtimes achievable by gate

based compilation. Our full circuit optimization code, along with

the results of optimization applied to our benchmarks, is available

on our Github repository [18].

4.2 QAOA

Quantum Approximate Optimization Algorithm (QAOA) is an al-

gorithm for generating approximate solutions to problems that are

hard to solve exactly. At an intuitive level, QAOA can be under-

stood as an alternating pattern of Mixing and Cost-Optimization

steps. At each Mixing step, QAOA applies diffusion so that every

possible state is explored in quantum superposition. At each Cost-

Optimization step, a bias is applied to boost the magnitudes of quan-

tum states that minimize a cost function. Thereafter, measuring
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can yield an approximate solution close to optimal with high prob-

ability. The number of alternating Mixing and Cost-Optimization

rounds is known as p. Even for small p, QAOA has competitive

results against classical approximation algorithms. For example,

at p = 1, QAOA applied to the NP-hard MAXCUT problem yields

a cut of size at least 69% of the optimal cut size [14]. At p = 5,

simulations have demonstrated that QAOA achieves mean parity

with the best-known classical algorithm, Goemans-Williamson, for

10 node graphs [9]. For larger p, QAOA is expected to outperform

classical approximation algorithms even for worst-case bounds, al-

though theoretical guarantees have not been established yet. QAOA

is of particular interest in the near term because recent work has

shown that it is computationally universal [29]. Moreover, QAOA

has shown experimental resilience to noise [39]. For these reasons,

QAOA is a leading candidate for quantum supremacy [15], the solu-

tion of a classically-infeasible problem using a quantum computer.

Similarly to VQE, QAOA is a guess-check-repeat algorithm. In

the case of QAOA, the guesses correspond to “Mixing magnitude

during iteration 1 ≤ i ≤ p" and “Cost-Optimization magnitude

during iteration 1 ≤ i ≤ p". Hence, the number of parameters in a

QAOA circuit is 2p: one scalar for Mixing magnitude and one for

Cost-Optimization magnitude, for each of the p rounds.

We benchmark QAOA for N = 6 and 8 node graphs, with the

number of QAOA roundsp spanning from 1 to 8. For each (N ,p) pair,

we benchmark for two types of random graphs: 3-regular (each node

is connected to three neighbors) and Erdos-Renyi (each possible

edge is included with 50% probability). This yields 2 × 8 × 2 = 32

benchmarks circuits for QAOA. The gate-based runtimes for each

of these benchmarks are reported in Table 3. As with the VQE

benchmarks, the runtimes are computed after circuit mapping and

optimizations, to form a fair baseline.

5 GRAPE COMPILATION

In this section, we describe GRAPE (GRadient Ascent Pulse Engi-

neering), a compilation technique that aims to produce the optimal

possible sequence of analog control pulses needed to realize the

unitary matrix transformation for a targeted quantum circuit. At an

abstract level, GRAPE simply treats the underlying quantum com-

puter as a black box. The black box accepts time-discretized control

pulses as input and outputs the unitary matrix of the transformation

that is realized by the input control pulses. GRAPE performs gradi-

ent descent over the space of possible control pulses to search for

the optimal sequence of input signals that achieve the targeted uni-

tary matrix up to a specified fidelity. We used the Tensorflow-based

implementation of GRAPE described in [27], which has demon-

strated good performance. The gradients are computed analytically

and backpropogated with automatic differentiation.

In this paper, we define the optimal sequence of control pulse as

the one of shortest durationśthus, we seek to speed up the pulse

time with respect to gate-based compilation. Reducing the pulse

time is important in quantum computation because qubits have

short lifetimes due to quantum decoherence effects. The decoher-

ence error increases exponential with time, so the effect of a pulse

time speedup enters the power of an exponential term. We focus

on this error metric because it is one of the dominant error terms

for superconducting qubits and it is well understood. However, in

N = 6 N = 8

3-Regular Erdos-Renyi 3-Regular Erdos-Renyi

p = 1 113 ns 84 ns 163 ns 157 ns

p = 2 199 ns 151 ns 365 ns 297 ns

p = 3 277 ns 223 ns 530 ns 443 ns

p = 4 356 ns 296 ns 695 ns 596 ns

p = 5 434 ns 368 ns 860 ns 750 ns

p = 6 512 ns 440 ns 1025 ns 903 ns

p = 7 590 ns 512 ns 1191 ns 1056 ns

p = 8 668 ns 584 ns 1356 ns 1209 ns

Table 3: Gate-based runtimes for our 32 benchmark QAOA

MAXCUT circuits. Our benchmarks consider two types of

random graphs: 3-Regular and Erdos-Renyi. We consider

both 6 and 8 node graphs–the number of qubits in the cir-

cuit is the same as the number of nodes in the graph. We

benchmarked over p, the number of repetitions of the basic

QAOA block, ranging from 1 to 8, which represents a range

ofp that is of both theoretical and practical interest [9]. As in

Table 2, the gate-based runtimes are based on the gate times

in Table 1, after each circuit has been optimized, parallel-

scheduled, and mapped.

principle, GRAPE can be used to control other sources of error such

as gate errors, State Preparation and Measurement (SPAM) errors,

and qubit crosstalk, as demonstrated in past work [1, 8, 12].

5.1 Speedup Sources

Because GRAPE translates directly from a unitarymatrix to hardware-

level control pulsesświthout the overhead of an intermediate set

of quantum gatesśit achieves more optimized control pulses than

gate-based compilation does. In particular, we observed significant

pulse speedups from GRAPE due to the following factors:

• ISA alignment. Gate based compilation incurs a signifi-

cant overhead because the set of basis gates will not be

directly implementable on a target machine. For example,

while quantum circuits are typically compiled down to CX

(CNOT) gates as the default two-qubit instructions, actual

quantum computers implement a wide range of native two-

qubit operations such as the MS gate or the iSWAP gate.

Compiling gates to pulses incurs a significant overhead from

this ISA misalignment.

• Fractional gates. A unique feature of quantum comput-

ing is that all operations can be fractionally performedśfor

example, CX1/2 is a valid quantum gate, as is CXp more

generally for any power. Often, a fractional application of a

basis gate is sufficient to execute a larger quantum operation.

The fixed basis set of gate based compilation misses these

optimizations, whereas GRAPE works in a continuous basis

and realizes fractional gates when beneficial.

• Control Field Asymmetries. While gate based compila-

tion puts Rx and Rz gates on an equal footing, at a physical

level, there is often a significant asymmetry between the
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As our QAOA benchmarks have circuit widths of 6 and 8 qubitsś

larger than the 4 qubit blocks we feed to GRAPEśthe number of

serial blocks will scale linearly with p. Therefore, we don’t expect

to see an unboundedly growing speedup of GRAPE with increasing

p, but we still expect to see gains within each 4 qubit block.

6 STRICT PARTIAL COMPILATION

While full quantum optimal control generates the fastest possible

pulse sequence for a target circuit, its compilation latency on the

order of several minutes is untenable for variational algorithms,

in which compilation is interleaved with computation. In order to

approach the pulse speedup of GRAPE without incurring the full

cost in compilation latency, it is necessary to exploit the structure of

the variational circuits. We term this structural analysis as partial

compilation, and it is executed as pre-computation step prior to

executing the variational algorithm on a quantum computer.

Our first strategy, Strict Partial Compilation, stems from the

observation that for typical circuits in variational algorithms, most

of the gates are independent of the parametrization. For example,

Figure 3a shows an example variational circuit. While the circuit

has many gates, only four of them depend on the variational θi
parameters. All of the other gates can be blocked into maximal

parametrization-independent subcircuits. Figure 3b demonstrates

the application of strict partial compilation to the variational circuit

from Figure 3a. The sequence of resulting subcircuits is [Fixed,

Rz (θ1), Fixed, Rz (θ1), Fixed, Rz (θ2), Fixed, Rz (θ3)], which exhibits

strict alternation between ‘Fixed’ subcircuits that don’t depend on

any θi and Rz (θi ) gates that do depend on the parametrization.

After the strict partial compilation blocking is performed, we

use full GRAPE to pre-compute the shortest pulse sequence needed

to execute each Fixed subcircuit. These static precompiled pulse

sequences can be defined as microinstructions in a low-level assem-

bly such as eQASM [16]. Thereafter, at runtime, the pulse sequence

for any parametrization can be generated by simply concatenating

the pre-computed pulse sequences for Fixed blocks with the control

pulses for each parametrization-dependent Rz (θi ) gate. Thus, strict

partial compilation retains the extremely fast (essentially instant)

compilation time of standard gate based compilation. However,

since each Fixed block was compiled by GRAPE, the resulting pulse

duration is shorter than if the Fixed blocks had been compiled by

gate based compilation. Thus, strict partial compilation achieves

pulse speedups over gate-based compilation, with no increase in

compilation latency.

Full discussion of the results is deferred to Section 8. A priori,

we note that the performance of strict partial compilation is tied

to the depth of the Fixed subcircuits. For deeper Fixed subcircuits,

GRAPE has more opportunities for optimization and can achieve a

greater advantage over gate-based compilation. From inspection of

Figure 3a, we see that the depth of Fixed blocks is determined by

the frequency of Rz (θi ) gates. For our benchmarked VQE-UCCSD

circuits, Rz (θi ) gates comprise only 5-8% of the total number of

gates, so the Fixed subcircuits have reasonably long depths. For our

benchmarked QAOA circuits however, the Rz (θi ) gates comprise 15-

28% of the total number of gates, so the Fixed subcircuits have short

depths and the potential advantage of strict partial compilation is

limited. This motivates us to consider other strategies that more

closely match the pulse speedups of full GRAPE.

7 FLEXIBLE PARTIAL COMPILATION

As strict partial compilation is bottlenecked by the depth of Fixed

subcircuits, we are motivated to consider strategies that create

deeper subcircuits. The core idea behind flexible partial compilation

is to create subcircuits that are only ‘slightly’ parametrized, in that

they depend on at most one of the θi variational parameters. As

discussed below, we can perform hyperparameter tuning to ensure

that GRAPE finds optimized pulses for single-angle parametrized

subcircuits much faster than for general subcircuits.

7.1 Parameter Monotonicity

An initial strategy for creating these single-angle parametrized

subcircuits would be to merge each consecutive pair of Fixed and

Rz (θi ) subcircuits into a single subcircuit that only depends on

θi . However, this strategy would add at most one gate of depth to

each subcircuit, which would not lead to significantly better pulses.

However, we make a key observation which we term parameter

monotonicity. For both the VQE UCCSD and QAOA circuits, the

appearances of θi -dependent gates is monotonic in iśonce a θi
dependent gate appears, the subsequent parametrization-dependent

gates must be θ j for j ≥ i . As a result, subcircuits with the same

value of θi must be consecutive. For example, the sequence of angles

in parametrization-dependent gates could be [θ1,θ1,θ2,θ3] as in

Figure 3a, but not [θ1,θ2,θ3,θ1].

At a high level, parameter monotonicity for VQE/UCCSD and

QAOA arise because their circuit constructions sequentially apply a

circuit corresponding to each parameter exactly once. For instance,

in QAOA, each parameter corresponds to the magnitude of Mixing

or Cost-Optimization during the ith roundśonce the corresponding

Mixing or Cost-Optimization has been applied, the circuit no longer

depends on that parameter. Parameter monotonicity is not immedi-

ately obvious from visual inspection of variational circuits, because

the circuit constructions and optimizations transform individual

θi -dependent gates to ones that are parametrized in terms −θi or

θi/2. We resolve these latent dependencies by explicitly tagging

the dependent parameter in software during the variational circuit

construction phase.

The implication of parameter monotonicity is that the subcir-

cuits considered by flexible partial compilation are significantly

deeper than the ones considered by strict partial compilation. Fig-

ure 3c demonstrates a small example; note that the θ1-dependent

subcircuit indicated by red dashed lines is significantly deeper than

the subcircuits generated by strict partial compilation.

7.2 Hyperparameter Optimization

In GRAPE, an optimal control pulse is one that minimizes a set

of cost functions corresponding to control amplitude, target state

infidelity, and evolution time, among others[27]. To obtain an op-

timal control pulse, the GRAPE algorithm manipulates a set of

time-discrete control fields that act on a quantum system. It may

analytically compute gradients of the cost functions to be mini-

mized with respect to the control fields. These gradients are used to

update control fields with an optimizer such as ADAM or L-BFGS-B.
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Thus, our pulse speedups are not merely about wall time speedups

for quantum circuits, but moreso about making computations pos-

sible in the first place, before the qubits decohere.

10 FUTURE WORK

The industry adoption of the OpenPulse standard will usher an

experimental era for pulse-level control. Running our partial compi-

lation schemes on an actual machine will be valuable in terms of de-

termining exactly how to weigh tradeoffs between pre-computation

resources, compilation latency, and pulse durations.

On the computational side, we also see significant potential for

extending the scalability of GRAPE. While past work has success-

fully used GRAPE on 10 qubit widths with very simple circuits (for

example, 10 identical single-qubit rotations in parallel), we found

that for complicated circuits, GRAPE only converges reliabily with

widths up to 4 qubits. This 4-qubit blocking width limits the depths

of the subcircuits that both GRAPE and our partial compilation

schemes can consider. For example, in the additional two VQE-

UCCSD molecules benchmarks (H2 and LiH) reported in Table 4,

flexible partial compilation and full GRAPE achieve 7-50x pulse

speedups because the benchmarks are 2 and 4 qubits in width. Thus,

investigating the convergence properties of GRAPE and extending

the circuit widths it reliably converges for will substantially extend

the advantage that these techniques can achieve over gate based

compilation.
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A SYSTEM HAMILTONIAN

Although our techniques are general and apply to any quantum

computer, the pulses produced by GRAPE are specific to the under-

lying hardware platform.We chose to compile to control pulses for a

quantum computer with gmon superconducting qubits [7], because

this qubit type is one of the leader contenders for scalable quan-

tum machines. For instance, the gmon qubit is central to Google’s

experimental efforts for demonstrating quantum supremacy.

The control pulse inputs that we specified to GRAPE were based

on the gmon’s system Hamiltonian. Each qubit, j, has a flux-drive

control pulse and a charge-drive control pulse which have respec-

tive Hamiltonians, truncated to the qubit subspace:

Hc, j (t) =

N∑
j=1

Ωc, j (t)(a
†
j + aj ) =

N∑
j=1

Ωc, j (t)
©«
0 1

1 0

ª®¬
and

Hf , j (t) =

N∑
j=1

Ωf , j (t)(a
†
j aj ) =

N∑
j=1

Ωf , j
©«
0 0

0 1

ª®¬
It can be seen from exponentiating these matrices that the control

pulses correspond to Rx (θ ) and Rz (ϕ) type gates respectively. We

chose maximium drive amplitudes of |Ωc, j (t)| ≤ 2π × 0.1 GHz and

|Ωf , j (t)| ≤ 2π × 1.5 GHz. These values, including the asymme-

try between charge and flux drive, are representative of typical

machines.

In addition to these single qubit terms, there is a control pulse for

each pair of connected qubits. We consider a rectangular-grid topol-

ogy with nearest-neighbor connectivity. Between each connected

pair of qubits j and k , the corresponding control Hamiltonian is

Hj,k (t) = д(t)(a
†
j + aj )(a

†
k
+ ak )

This two-qubit interaction type corresponds to the entangling

iSWAP gate (which swaps two qubits and also applies a phase

factor). We use a maximum coupling strength of |д(t)| ≤ 2π × 50

MHz

Within the GRAPE software, we discretized the control pulses

to 0.05 ns time slices. We set a target fidelity of 99.9% for each

invocation of GRAPE. Raw data from all of our GRAPE runs are

available at our Github repository [18].
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